Abstract

Low-carbon, medium-nitrogen 316 stainless steel is a principal candidate for a main structural material of a demonstration fast breeder reactor plant in Japan. A number of long-term creep tests and creep-fatigue tests have been conducting for two heats of the steel. Two representative creep-fatigue life prediction methods, i.e., time fraction rule and ductility exhaustion method were applied. An introduction of a simple viscous strain term improved the description of stress relaxation behavior and only the conventional (primary plus secondary) creep strain was assumed to contribute to creep damage in the ductility exhaustion method. The present ductility exhaustion approach was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted failure life as large as a factor of 30.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call