Abstract

Mod.9Cr–1Mo steel has been used for boiler components in ultra-supercritical (USC) thermal power plants. The creep strength of welded joint of this steel decreases due to the formation of Type IV cracking in heat affected zone (HAZ) at higher temperatures. The present paper aims to clarify the damage processes and mechanisms of the welded joint for Mod.9Cr–1Mo steel. Long-term creep tests of base metal, welded joint and simulated fine- grained HAZ were conducted at 550, 600 and 650 °C. Creep tests using thick plate welded joint specimen were interrupted at several time steps, and evolutions and distributions of creep damages were measured quantitatively using laser microscope. It is found that creep voids initiate at early stage of creep life (0.2 of life), the number of creep voids increases until 0.7 of life, and then voids coalesced into the macro crack at the later stage of life (0.8 of life). Creep damages concentrate mostly at a quarter depths of the plate thickness within the fine-grained HAZ of the present welded joint. The experimental creep damage distributions were compared with the computed results by using the FEM analysis. Both creep strain concentration and high stress triaxiality in fine-grained HAZ of welded joint are considered to accelerate the creep void formation and growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call