Abstract

A crystallographic creep damage constitutive model is developed for nickel-base directionally solidified superalloys. The rates of material degradation and grain boundary void growth are considered. The governing parameters are determined from the creep test data of single crystals and directionally solidified superalloys with a crystallographic orientation. A finite element program is used to analyze the creep damage behavior of nickel-base directionally solidified superalloys for different crystallographic orientations. The results depend on the number of grains modelled and compare well with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.