Abstract
Capability analysis allows evaluating the conformity of the production to the project specifications in industrial processes. Different indices can be used to assess the process capability, among them the Cpm (or Taguchi) index. In this work we propose the estimation of Cpm for normally distributed processes using ranked set sampling (RSS) and two extensions: pair ranked set sampling (PRSS), as an economical alternative; and double ranked set sampling (DRSS), as a more efficient (and expensive) strategy. Also, three different Cpm estimators were considered. Their performances regarding bias, mean squared error, and relative efficiency were evaluated through Monte Carlo simulation. The results indicated that: (i) There was a substantial variation in performances for different Cpm estimators, particularly for small samples; (ii) RSS based estimators outperformed their simple random sampling counterparts; (iii) DRSS estimator presented the lowest mean square error; and (iv) PRSS estimator showed competitive performance to its counterparts in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.