Abstract

Purpose – The purpose of this paper was mainly to select one of the three types of coatings for protection of steel used as reinforcement in composite pipes (thin steel shell covered by cement-mortar) subjected to chloride exposure. To achieve this target, an attempt was made to develop a simple methodology for evaluating the performance of corrosion protection measures in terms of chloride threshold level (CTL) and corrosion initiation time (TI). Design/methodology/approach – Bare, epoxy, red oxide and zinc primer-coated steel strips were embedded in cement mortar with sand/cement and water/cement ratios of 2 and 0.5 (by mass), respectively, to prepare the specimens which were exposed to chloride solution having a high concentration of 10 per cent NaCl. For determining the amounts of the water-soluble chloride diffused inside the specimens, powdered samples of mortar were collected from two different depths from the exposed surface of specimens on completion of each of the four different exposure times. The corrosion current densities were determined at two different stages. A step-by-step procedure for calculating CTL and TI using the measured chloride contents and corrosion current densities was established with the help of relevant information available in the literature. Findings – Based on the comparison of the values of CTL and TI calculated for bare steel and steel with all three types of coatings, utilizing the experimental data and the proposed calculation procedure, the epoxy-coated steel was found to have the best performance. Originality/value – This research has resulted into development of a simple methodology for evaluation of the performance of protective measures against corrosion of steel embedded in mortar or concrete exposed to chloride-bearing environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.