Abstract

Japan Atomic Energy Research Institute has started the development of the high temperature engineering test reactor (HTTR), a graphite-moderated, helium gas-cooled reactor with 30 MW thermal power and maximum outlet coolant temperature of 950 °C. This paper describes the core thermal and hydraulic (T/H) design procedure, including the validation of the computer code system, design criteria pertaining to the fuel design limit and the evaluated core T/H charateristics. The core T/H design of the HTTR has been carried out considering the specific characteristics of the core structure and the fuel based on R&D results. The coolant flow rate and temperature distribution are evaluated by the flow network analysis code flownet. The fuel temperature distribution is evaluated by the fuel temperature analysis code temdim with multi-cylindrical model using hot spot factors. Fuel design limit for anticipated operational occurrences and fuel temperature limit for normal operation are specified at 1600°C and 1495°C, respectively based on experimental results. Several design considerations are also adopted to realize a high reactor outlet coolant temperature of 950°C. As a result of core T/H design, the effective core flow rate and maximum fuel temperature during the high temperature test operation are 88% and 1492°C, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.