Abstract

Unlike other STEM (Science, Technology, Engineering, Mathematics) disciplines, program guidelines for undergraduate physiology degree programs have yet to be firmly established. The purpose of this study was to examine the use of physiology core concepts within undergraduate physiology curricula to discern whether a common subset could be broadly recommended for inclusion in programmatic guidelines. A curricular survey tool was developed to evaluate the depth to which each core concept was included in physiology curricula. Seven self-selected physiology programs assessed core concept inclusion across all courses within the major (0 = not covered, 1 = minimally covered, and 2 = covered to a great extent). The top core concepts ranked by each institution varied considerably, but all were robustly represented across programs. The top five combined rankings for all institutions were as follows: 1) interdependence (1.47 ± 0.63); 2) structure/function (1.46 ± 0.72); 3) homeostasis (1.45 ± 0.71); 4) scientific reasoning (1.44 ± 0.70); and 5) cell-cell communication (1.38 ± 0.75). No common subset of specific core concepts was evident among the seven participating institutions. Next, results were compared with recent Physiology Majors Interest Group (P-MIG) faculty and student surveys that ascertained perceptions of the top five most important core concepts. Three core concepts (homeostasis, structure/function, cell-cell communication) appeared in the top five in more than one-half of survey questions included. We recommend that future programmatic guidelines focus on inclusion of the core concepts of physiology as general models to scaffold learning in physiology curricula, but the programmatic guidelines should allow flexibility in the core concepts emphasized based on program objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.