Abstract

In most low-resource settings, microscopy still is the standard method for diagnosis of cutaneous leishmaniasis, despite its limited sensitivity. In Ethiopia, the more sensitive molecular methods are not yet routinely used. This study compared five PCR methods with microscopy on two sample types collected from patients with a suspected lesion to advise on optimal diagnosis of Leishmania aethiopica. Between May and July 2018, skin scrapings (SS) and blood exudate from the lesion spotted on filter paper (dry blood spot, DBS) were collected for PCR from 111 patients of four zones in Southern Ethiopia. DNA and RNA were simultaneously extracted from both sample types. DNA was evaluated by a conventional PCR targeting ITS-1 and three probe-based real-time PCRs: one targeting the SSU 18S rRNA and two targeting the kDNA minicircle sequence (the ‘Mary kDNA PCR’ and a newly designed ‘LC kDNA PCR’ for improved L. aethiopica detection). RNAs were tested with a SYBR Green-based RT-PCR targeting spliced leader (SL) RNA. Giemsa-stained SS smears were examined by microscopy. Of the 111 SS, 100 were positive with at least two methods. Sensitivity of microscopy, ITS PCR, SSU PCR, Mary kDNA PCR, LC kDNA PCR and SL RNA PCR were respectively 52%, 22%, 64%, 99%, 100% and 94%. Microscopy-based parasite load correlated well with real-time PCR Ct-values. Despite suboptimal sample storage for RNA detection, the SL RNA PCR resulted in congruent results with low Ct-values. DBS collected from the same lesion showed lower PCR positivity rates compared to SS. The kDNA PCRs showed excellent performance for diagnosis of L. aethiopica on SS. Lower-cost SL RNA detection can be a complementary high-throughput tool. DBS can be used for PCR in case microscopy is negative, the SS sample can be sent to the referral health facility where kDNA PCR method is available.

Highlights

  • Cutaneous leishmaniasis (CL) is a vector-borne disease caused by parasites of the genus Leishmania, which are transmitted by the bite of infected female phlebotomine sandflies

  • We compared five molecular methods on samples collected from patients with a skin lesion suspected of cutaneous leishmaniasis to advice on optimal diagnosis of L. aethiopica

  • We showed that RNA detection performed well for samples that were collected under difficult field conditions

Read more

Summary

Introduction

Cutaneous leishmaniasis (CL) is a vector-borne disease caused by parasites of the genus Leishmania, which are transmitted by the bite of infected female phlebotomine sandflies. CL is endemic in more than 80 countries globally with an estimated 0.7–1.2 million CL cases each year, predominantly in 4 countries of the New World and 6 of the Old World (including Ethiopia) together accounting for 70 to 75% of global CL incidence [1]. In Ethiopia, there is a unique dominant species, L. aethiopica, which is mainly found in the highlands putting nearly 29 million populations at risk and has an annual burden of an estimated 20,000 to 50,000 cases per year [1,2,3,4]. In contrast to New World CL, L. aethiopica typically causes crusty lesions with a patchy distribution and local edema that slowly develop and heal eventually (requiring approximately one to three years). Sometimes the infection may progress to more severe, chronic and complicated forms [6,7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call