Abstract

Ballistic conductance through a single atom adsorbed on a metallic surface and probed by a scanning tunneling microscope (STM) tip can be decomposed into eigenchannel contributions, which can be potentially obtained from shot noise measurements. Our density functional theory calculations provide evidence that transmission probabilities of these eigenchannels encode information on the modifications of the adatom's local density of states caused by its interaction with the STM tip. In the case of open shell atoms, this can be revealed in nonmonotonic behavior of the eigenchannel's transmissions as a function of the tip-adatom separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.