Abstract

Composite mesh prostheses incorporate the properties of multiple materials for ventral hernia repair. This study evaluated a polypropylene/ePTFE composite mesh with a novel internal polydioxanone (PDO) absorbable ring. Composite mesh was placed intraperitoneally in 16 pigs through an open laparotomy and explanted at 2, 4, 8, and 12 weeks. Intraabdominal adhesions were measured laparoscopically. Host tissue in-growth was assessed histologically and tensiometrically. Degradation of the internal PDO ring component was also measured tensiometrically. Appropriate statistical tests were used, and P ≤.05 indicated significance. No adhesions were formed in 50% of the grafts explanted at 8 weeks and 25% of grafts explanted at 12 weeks. There were significantly more vascular structures at 8 weeks, 73.5 ± 28, compared with 2 weeks, 6.75 ± 2 (P ≤.01). The T-peel force at the mesh-host tissue interface was not significantly different among time points. The absorbable PDO ring underwent complete degradation by 12 weeks. This composite mesh was associated with minimal intraabdominal adhesions, progressive in-growth of host tissues, and complete degradation of a novel internal PDO ring that aided mesh positioning. This composite hernia mesh showed a favorable performance in a porcine model of open ventral hernia repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call