Abstract

BackgroundMeasurement of the optic nerve sheath diameter (ONSD) via ultrasonography has been proposed as a non-invasive metric of intracranial pressure that may be employed during in-field patient triage. However, first responders are not typically trained to conduct sonographic exams and/or do not have access to an expensive ultrasound device. Therefore, for successful deployment of ONSD measurement in-field, we believe that first responders must have access to low-cost, portable ultrasound and be assisted by artificial intelligence (AI) systems that can automatically interpret the optic nerve sheath ultrasound scan.We examine the suitability of five commercially available, low-cost, portable ultrasound devices that can be combined with future artificial intelligence algorithms to reduce the training required for and cost of in-field optic nerve sheath diameter measurement. This paper is focused on the quality of the images generated by these low-cost probes. We report results of a clinician preference survey and compare with a lab analysis of three quantitative image quality metrics across devices. We also examine the suitability of the devices in a hypothetical far-forward deployment using operators unskilled in ultrasound, with the assumption of a future onboard AI video interpreter.ResultsWe find statistically significant differences in clinician ranking of the devices in the following categories: “Image Quality”, “Ease of Acquisition”, “Software”, and “Overall ONSD”. We show differences in signal-to-noise ratio, generalized contrast-to-noise ratio, point-spread function across the devices. These differences in image quality result in a statistically significant difference in manual ONSD measurement. Finally, we show that sufficiently wide transducers can capture the optic nerve sheath during blind (no visible B-mode) scans performed by operators unskilled in sonography.ConclusionsUltrasound of the optic nerve sheath has the potential to be a convenient, non-invasive, point-of-injury or triage measure for elevated intracranial pressure in cases of traumatic brain injury. When transducer width is sufficient, briefly trained operators may obtain video sequences of the optic nerve sheath without guidance. This data suggest that unskilled operators are able to achieve the images needed for AI interpretation. However, we also show that image quality differences between ultrasound probes may influence manual ONSD measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call