Abstract

Antimicrobial resistance and biofilm formation are increasingly significant public health concerns. This study aimed to examine the antibacterial and antibiofilm properties of carbon dots (C-dots) alone and in combination with antibiotics against biofilm-forming isolates of Pseudomonas aeruginosa. The antibacterial property of C-dots was investigated by broth microdilution method against ATCC PAO1 and P. aeruginosa clinical isolates. The antibacterial effect of the C-dots and ciprofloxacin combination was investigated using the checkerboard method. The antibiofilm effect of the C-dots alone and its combination with ciprofloxacin was evaluated using the microtiter plate method. Subsequently, the toxicity of each agent was tested on L929 fibroblast cells. In the end, the effects of C-dots on the expression levels of pslA, pelA, and ppyR genes were determined using real-time quantitative PCR. The combination of C-dots and ciprofloxacin exhibited a synergistic effect. Additionally, this compound substantially decreased bacterial growth (P < 0.0001) and inhibited biofilm formation at MIC (96 µg/mL) and sub-MIC (48 µg/mL) concentrations (P < 0.0053, P < 0.01). After being exposed to C-dots at a concentration of 1mg/mL for 24 hours, the survival rate of L929 cells was 87.3%. The expression of genes pslA, pelA, and ppyR, associated with biofilm formation in P. aeruginosa, was significantly reduced upon exposure to C-dots (P < 0.0023). The findings demonstrate a promising new treatment method for infections. Furthermore, reducing the dosage of antibiotics can lead to an improvement in the toxic effects caused by dose-dependent antibiotics and antimicrobial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.