Abstract

With regard to the different requirements, various collimators are widely employed within nuclear medicine systems in order to evaluate the metabolism of organs as well as improve the contrast of images and better diagnosis. In this study, Fan Beam (FB) and Parallel Beam (PB) collimators in the shapes of round and hexagonal holes have been investigated and compared based on the Geometric Efficiency (G), Geometric Resolution (Rc), Total Resolution (Rt), FWHM and Scatter and Penetration (S + P) components using the Monte Carlo simulation. Calculations demonstrated that the G was improved with the increase in the distance between point source and collimator face (z). In contrast, the G was reduced with an increase in the angle of slant hole. In the FB collimator, the Rc and Rt were increased when the increase in the hole angle and/or the distance. The simulated results indicated in both collimators with the increase in z, a) the FWHM was increased as well as the peak of the PSF curve was decreased, and b) the S + P amounts decreased, but in the distinct z, the FWHM of the FB collimator is better than that of the PB collimator. It is shown that the results were in agreement with the ADAC company data. Also, Benchmark for measuring ADAC company demonstrated the calculated and simulated amounts of the Rc and Rt with round and hexagonal holes shapes had maximum and minimum average relative differences equal to −7.6% for PB and 1% for FB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.