Abstract
We collected electroencephalographic (EEG) data from 16 subjects while they performed a mental arithmetic task at five different levels of difficulty. A classifier was trained to discriminate between three conditions: relaxed, low workload and high workload, using spectral features of the EEG. We obtained an average classification accuracy of 62%. A continuous workload index was obtained by low-pass filtering the classifier’s output. The correlation coefficient between the resulting workload index and the difficulty level of the task was 0.6 on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.