Abstract
Abstract The issue of carbon monoxide and nitrogen oxides emissions into the atmosphere is very current. This article thus focuses on the assessment of elemental composition of selected herbal biomass species and emission concentrations during combustion in a commonly available grate combustion device for briquetted fuel. In tests, emission concentrations were evaluated in contrast to the oxygen concentration in flue gas and flue gas temperatures. Samples of camelina (Camelina sativa), giant miscanthus (Miscanthus gigantheus), reed canary grass (Phalaris arundinacea L.) and sorghum (Sorghum bicolor) were used. Elementary and stoichiometric combustion analyses were conducted for these samples (LECO AC-600 semi-automatic calorimeter, CHN628 + S elemental analyser and LECO TGA-701 analyser). Analyses of C, H, N and S concentrations and calorific values showed that samples of briquetted herb biomass had insignificant differences and could be used for energy purposes without limitation. The limiting factor was the high amount of ash, which amounted to 6.59% of dry weight in reed canary grass briquette sample. Furthermore, a high percentage (1.91% wt.) of nitrogen was observed in reed canary grass briquettes. Such a high amount of nitrogen during combustion tests resulted in an increase in NOx emission levels in flue gas of the Phalaris arundinacea L. sample, in which it reached the maximum concentration of 375.20 mg·m−3. The combustion tests showed that even under steady-state conditions, high concentrations of carbon monoxide could not be avoided for tested briquetted biofuels without active regulation of the combustion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.