Abstract
Cloud fraction, which varies greatly among general circulation models, plays a crucial role in simulation of Indian summer monsoon rainfall (ISMR). The NCEP Climate Forecast System version 2 (CFSv2) model is evaluated in terms of its simulation of cloud fraction, cloud condensate, outgoing longwave radiation (OLR), and tropospheric temperature (TT). Biases in these simulated quantities are computed using observations from CALIPSO and reanalysis data from MERRA. It is shown that CFSv2 underestimates (overestimates) high- (mid-) level clouds. The cloud condensate is also examined to see its impact on different types of clouds. The upper-level cloud condensate is underestimated, particularly during the summer monsoon period, which leads to a cold TT and a dry precipitation bias. The unrealistically weak TT gradient between ocean and land is responsible for the underestimation of ISMR. The model-simulated OLR is overestimated which depicts the weaker convective activity. A large underestimate of precipitable water is also seen along the cross-equatorial flow and particularly over the Indian land region collocated with a dry precipitation bias. The linkages among cloud microphysical, thermodynamical, and dynamical processes are identified here. Thus, this study highlights the importance of cloud properties, a major cause of uncertainty in CFSv2, and also proposes a pathway for improvements in its simulation of the Indian summer monsoon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.