Abstract
Time series gene expression data is widely used to study different dynamic biological processes. Although gene expression datasets share many of the characteristics of time series data from other domains, most of the analyses in this field do not fully leverage the time-ordered nature of the data and focus on clustering the genes based on their expression values. Other domains, such as financial stock and weather prediction, utilize time series data for forecasting purposes. Moreover, many studies have been conducted to classify generic time series data based on trend, seasonality, and other patterns. Therefore, an assessment of these approaches on gene expression data would be of great interest to evaluate their adequacy in this domain. Here, we perform a comprehensive evaluation of different traditional unsupervised and supervised machine learning approaches as well as deep learning based techniques for time series gene expression classification and forecasting on five real datasets. In addition, we propose deep learning based methods for both classification and forecasting, and compare their performances with the state-of-the-art methods. We find that deep learning based methods generally outperform traditional approaches for time series classification. Experiments also suggest that supervised classification on gene expression is more effective than clustering when labels are available. In time series gene expression forecasting, we observe that an autoregressive statistical approach has the best performance for short term forecasting, whereas deep learning based methods are better suited for long term forecasting.
Highlights
Microarray time series gene expression experiments have essential applications in studying cell cycle development [1, 2], immune response [3], and other biological processes
We present novel Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) based methods for time series classification and compare their performances with deep learning based approaches deep neural networks (DNN) and DeepTrust as well as state-of-the-art traditional methods for classification
We have proposed and investigated different classification and forecasting methods for time series gene expression data
Summary
Microarray time series gene expression experiments have essential applications in studying cell cycle development [1, 2], immune response [3], and other biological processes. Monitoring the change in gene expression patterns over time provides opportunities to study mechanistic characteristics of various cellular processes. The Stanford Microarray Database (SMD) [3] stores raw and normalized data from microarray experiments and provides web interfaces for researchers to retrieve, analyze, and visualize their data. Data has various significance, such as genetic interaction and knockout screens, understanding of development, cellular response to drug treatment [4], tumorigenesis [4], infection or disease identification, and determining correlated genes [5]. Existing studies mostly utilize gene expression values for clustering gene profiles and rarely focus on performing tasks such as classification, forecasting or anomaly detection [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.