Abstract

BackgroundA triple antibiotic mixture (ciprofloxacin; CF, metronidazole; MN, and minocycline; MC) has been used for dental root canal medicaments in pulp regeneration therapy. However, tooth discolorations, cervical root fractures, and inadequate pulp-dentin formation have been reported due to the triple antibiotic regimen. Therefore, an antibiotic encapsulated biomimetic nanomatrix gel was developed to minimize the clinical limitations and maximize a natural healing process in root canal infections. In this study, minimal bacterial concentrations (MBC) of the selected antibiotics (CF and MN) were tested in 14 representative endodontic bacterial species. Then MBC of each CF and MN were separately encapsulated within the injectable self-assembled biomimetic nanomatrix gel to evaluate antibacterial level on Enterococcus faecalis and Treponema denticola.ResultsAntibiotic concentrations lower than 0.2 μg/mL of CF and MN demonstrated antibacterial activity on the 14 endodontic species. Furthermore, 6 different concentrations of CF and MN separately encapsulated with the injectable self-assembled biomimetic nanomatrix gel demonstrated antibacterial activity on Enterococcus faecalis and Treponema denticola at the lowest tested concentration of 0.0625 μg/mL.ConclusionsThese results suggest that each CF and MN encapsulated within the injectable self-assembled biomimetic nanomatrix gel demonstrated antibacterial effects, which could be effective for the root canal disinfection while eliminating MC. In the long term, the antibiotic encapsulated injectable self-assembled biomimetic nanomatrix gel can provide a multifunctional antibiotic delivery method with potential root regeneration. Further studies are currently underway to evaluate the effects of combined CF and MN encapsulated within the injectable self-assembled biomimetic nanomatrix gel on clinical samples.

Highlights

  • A triple antibiotic mixture has been used for dental root canal medicaments in pulp regeneration therapy

  • The biomimetic nanomatrix gel was considered to be applied to the regenerative endodontics; antibiotic molecules can be encapsulated within the self-assembled biomimetic nanomatrix gel to be released in controlled manner inside root canal, which can reduce the antibiotic concentrations compared to the triple antibiotic mixture; unique viscoelastic property of the nanomatrix gel enables direct injection into the infected root canal space; the extracellular matrix (ECM) mimicking selfassembled peptide amphiphiles (PAs) can promote interaction with surrounding pulp tissues

  • The effect of the antibiotic MN was studied on the same densities of E. faecalis as the CF experiments

Read more

Summary

Introduction

A triple antibiotic mixture (ciprofloxacin; CF, metronidazole; MN, and minocycline; MC) has been used for dental root canal medicaments in pulp regeneration therapy. The biomimetic nanomatrix gel contains several functional units; scaffolding self-assembled nanofibers, injectable viscoelastic properties, encapsulation of cells or antibiotics at physiological conditions, releasing of antibiotics in a highly controlled manner, cell adhesive ligands, and enzyme-mediated degradable sites [16,18] With these functional benefits, the biomimetic nanomatrix gel was considered to be applied to the regenerative endodontics; antibiotic molecules can be encapsulated within the self-assembled biomimetic nanomatrix gel to be released in controlled manner inside root canal, which can reduce the antibiotic concentrations compared to the triple antibiotic mixture; unique viscoelastic property of the nanomatrix gel enables direct injection into the infected root canal space; the ECM mimicking selfassembled PAs can promote interaction with surrounding pulp tissues. While the conventional triple mixture was mixed manually with nonfunctional and non-bioactive paste

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call