Abstract

Evaluating chondrocytes in situ to document the effectiveness of cartilage preservation techniques has proven exceedingly difficult. This study was conducted to determine the effectiveness of WST-1 on porcine chondrocytes in situ after cooling to -10 degrees C (without ice formation) compared to membrane integrity stains (MIS). Osteochondral dowels (10 mm in diameter) were harvested from sexually mature pigs within 24 h of sacrifice and randomized into three groups: (1) untreated control, (2) one day storage at -10 degrees C (in cryoprotectant solution to prevent ice formation), and (3) seven day storage at -10 degrees C (in cryoprotectant solution). Fluorescent MISs (Syto 13 and ethidium bromide) were used on 70 microm slices. Representative images were digitized and green and red pixel numbers determined the percent recovery of intact cells. Mitochondrial activity (WST-1) was determined using 20 slices of 70 microm thickness per sample to obtain reliable readings using a spectrophotometer at 450 nm. All samples underwent repeated measures of membrane integrity and metabolic activity obtained after 0, 3, 24, 48, 72, and 144 h incubation in growth media. WST-1 consistently overestimated cell recovery with results greater than fresh controls. After hypothermic storage for 7 days, the WST-1 measurement demonstrated decreased mitochondrial activity that recovered by 48 h. MIS was most accurate when "absolute" cell recovery was compared to original controls, taking into account cell density. In conclusion, WST-1 can track metabolic activity of chondrocytes in situ over time but "absolute" cell recovery determined by MISs after 48 h incubation may be the most accurate determination of the number of live chondrocytes in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.