Abstract
Fourteen field campaigns were conducted in five inland lakes during different seasons between 2006 and 2013, and a total of 398 water samples with varying optical characteristics were collected. The characteristics were analyzed based on remote sensing reflectance, and an automatic cluster two-step method was applied for water classification. The inland waters could be clustered into three types, which we labeled water types I, II and III. From water types I to III, the effect of the phytoplankton on the optical characteristics gradually decreased. Four chlorophyll-a retrieval algorithms for Case II water, a two-band, three-band, four-band and SCI (Synthetic Chlorophyll Index) algorithm were evaluated for three water types based on the MERIS bands. Different MERIS bands were used for the three water types in each of the four algorithms. The four algorithms had different levels of retrieval accuracy for each water type, and no single algorithm could be successfully applied to all water types. For water types I and III, the three-band algorithm performed the best, while the four-band algorithm had the highest retrieval accuracy for water type II. However, the three-band algorithm is preferable to the two-band algorithm for turbid eutrophic inland waters. The SCI algorithm is recommended for highly turbid water with a higher concentration of total suspended solids. Our research indicates that the chlorophyll-a concentration retrieval by remote sensing for optically contrasted inland water requires a specific algorithm that is based on the optical characteristics of inland water bodies to obtain higher estimation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.