Abstract

Abstract Drinking water utilities use booster stations to maintain chlorine residuals throughout water distribution systems. Booster stations could also be used as part of an emergency response plan to minimize health risks in the event of an unintentional or malicious contamination incident. The benefit of booster stations for emergency response depends on several factors, including the reaction between chlorine and an unknown contaminant species, the fate and transport of the contaminant in the water distribution system, and the time delay between detection and initiation of boosted levels of chlorine. This paper takes these aspects into account and proposes a mixed-integer linear program formulation for optimizing the placement of booster stations for emergency response. A case study is used to explore the ability of optimally placed booster stations to reduce the impact of contamination in water distribution systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call