Abstract
The properties of high-performance concretes obtained by the internal curing technique were studied in the fresh and hardened states. In some of the concrete mixtures, fine normal weight aggregates were replaced with lightweight aggregates (LWA) at 20 % vol. and ordinary portland cement was replaced by pulverized class F fly ash at 20 % by mass. Additionally, some mixtures were prepared including a shrinkage-reducing admixture, either as part of the mixing water or pre-soaked into the lightweight fine aggregates. The prepared concretes were subjected to degradation tests, such as accelerated carbonation and chloride ion deterioration. In addition, the reinforced concretes were analyzed through electrochemical corrosion tests with the linear polarization resistance technique. It was found that the internally cured concretes presented a mechanical resistance similar to those reported for the reference concretes (conventional concretes), but provided a higher resistance to carbonation, rapid penetration of chloride ions, and a lower chloride ion diffusion coefficient. The reinforcing steel structure in the internally cured concretes showed lower corrosion currents (Icorr) and corrosion potentials (Ecorr) in comparison to the reference concretes. Therefore, the use of the internal curing technique in concretes with pre-soaking in either water or a solution of shrinkage-reducing admixture can be considered as a viable alternative to extend the service life of concrete structures in contact with harmful environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.