Abstract

It is known that endoplasmic reticulum (ER) stress in cells and extracellular vesicles (EVs) plays a significant role in cancer cells, therefore the evaluation of compounds that can regulate ER stress and EV secretion would be a suitable system for further screening and development of new drugs. In this study, we evaluated chemical chaperones derived from natural products based on monitoring Bip/GRP78 promoter activity during cancer cell growth, at the level of the single cell, by a bioluminescence microscopy system that had several advantages compared with fluorescence imaging. It was found that several chemical chaperones, such as ferulic acid (FA), silybin, and rutin, affected the activity. We visualized EVs from cancer cells using bioluminescence imaging and showed that several EVs could be observed when using CD63 fused with NanoLuc luciferase, which has a much smaller molecular weight and higher intensity than conventional firefly luciferase. We then examined the effects of the chemical chaperones on EVs from cancer cells by bioluminescence imaging and quantified the expression of CD63 in these EVs. It was found that the chemical chaperones examined in this study affected CD63 levels in EVs. These results showed that imaging at the level of the single cell using bioluminescence is a powerful tool and could be used to evaluate chemical chaperones and EVs from cancer cells. This approach may produce new information in this field when taken together with conventional and classical methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call