Abstract

A common problem faced by drinking water studies is that of properly characterizing the corrosion products (CP) in iron pipes or synthetic Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. The present work compares the relative applicability of a suite of imaging and analytical techniques for the characterization of CPs and synthetic Fe oxide thin films and provide an overview of the type of data that each instrument can provide as well as their limitations to help researchers and consultants choose the best technique for a given task. Crushed CP from a water distribution system and synthetic Fe oxide thin films formed on glass surfaces were chosen as test samples for this evaluation. The CP and synthetic Fe oxide thin films were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray powder diffractometry (XRD), grazing incident diffractometry (GID...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.