Abstract

The freshwater cyanobacteria, Microcystis aeruginosa (M. aeruginosa), is well known to produce microcystins (MCs) and induce the formation of harmful algal blooms (HABs) in aquatic environments, but the effects that urea fertilizer has on cyanobacterial growth and toxin production from a molecular biology perspective remain poorly understood. We evaluated changes in the growth and toxicity of M. aeruginosa cultured under different conditions of nitrogen (N) starvation (NN), low nitrogen (LN), and high nitrogen (HN). Cell density and chlorophyll-a concentrations decreased in cyanobacteria exposed to N starvation and increased following the addition of urea, whereas MCs content increased to a peak and then decreased after urea addition. Transcriptomic analysis confirmed that most genes encoding MCs and genes involved in N metabolic pathways were upregulated under N starvation and LN conditions, whereas these genes were downregulated under HN conditions. Our results offer important insights into the exploring N in controlling the formation of HABs and toxin production based on both physiological and molecular response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call