Abstract
Treatment options for colorectal cancer (CRC), especially in advanced stages are still insufficient. There, the discovery of Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was a bright spot. However, most cancers show resistance toward apoptotic signals. Cyclin-dependent kinase 9 (CDK9) plays a crucial role in cell cycle progression in most tissues. We recently demonstrated the role of CDK9 in mediating TRAIL resistance. In this work, we investigated the role of CDK9 in colorectal cancer. Immunohistochemical analysis of CDK9 expression in cancer and normal tissues of CRC specimens was performed. The effect of selective CDK9 inhibition in combination with TRAIL on CRC cells was analyzed via cell viability, colony formation, and induction of apoptosis by flow cytometry. The mechanism of action was conducted via western blotting. We now have confirmed overexpression of CDK9 in cancer tissues, with low expression associated with poorer survival in a subset of CRC patients. In-vitro, CDK9 inhibition could strongly promote TRAIL-induced cell death in TRAIL-resistant CRC cells. Mechanistically, CDK9 inhibition induced apoptosis by downregulation of antiapoptotic proteins, myeloid leukemia cell differentiation protein 1 (Mcl-1) and FLICE-inhibitory protein (c-FLIP). Overall, we identified CDK9 as a prognostic marker and combined CDK9 inhibition and TRAIL as a novel and promising therapeutic approaches for colorectal cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.