Abstract

Modern-day treatment for burns and wounds demands scarless healing which is becoming a challenging clinical problem. Thus, to alleviate such issues, it becomes essential to develop biocompatible and biodegradable wound dressing material for skin tissue regeneration, which could heal the wound in a very short span leaving no scars. The present study focuses on the development of nanofiber of Cashew gum polysaccharide-Polyvinyl alcohol using electrospinning. The prepared nanofiber was optimized based on uniformity of fiber diameter (FESEM), mechanical property (Tensile Strength), and optical contact angle (OCA) and was subjected to evaluation of: antimicrobial activity against Streptococcus aureus and Escherichia coli, hemocompatibility, and in-vitro biodegradability. The nanofiber was also characterized using different analytical techniques including thermogravimetric analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction. The cytotoxicity was also investigated on L929 fibroblast cells using an SRB assay. The in-vivo wound healing assay showed accelerated healing in comparison to untreated wounds. The in-vivo wound healing assay and histopathological slides of regenerated tissue confirmed that the nanofiber has the potential to accelerate healing properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call