Abstract

BackgroundIn order to better understand respiratory syncytial virus (RSV) epidemiology and burden in tropical Africa, optimal case definitions for detection of RSV cases need to be identified.MethodsWe used data collected between September 2009 - August 2013 from children aged <5 years hospitalized with acute respiratory Illness at Siaya County Referral Hospital. We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of individual signs, symptoms and standard respiratory disease case definitions (severe acute respiratory illness [SARI]; hospitalized influenza-like illness [hILI]; integrated management of childhood illness [IMCI] pneumonia) to detect laboratory-confirmed RSV infection. We also evaluated an alternative case definition of cough or difficulty breathing plus hypoxia, in-drawing, or wheeze.ResultsAmong 4714 children hospitalized with ARI, 3810 (81 %) were tested for RSV; and 470 (12 %) were positive. Among individual signs and symptoms, cough alone had the highest sensitivity to detect laboratory-confirmed RSV [96 %, 95 % CI (95–98)]. Hypoxia, wheezing, stridor, nasal flaring and chest wall in-drawing had sensitivities ranging from 8 to 31 %, but had specificities >75 %. Of the standard respiratory case definitions, SARI had the highest sensitivity [83 %, 95 % CI (79–86)] whereas IMCI severe pneumonia had the highest specificity [91 %, 95 % CI (90–92)]. The alternative case definition (cough or difficulty breathing plus hypoxia, in-drawing, or wheeze) had a sensitivity of [55 %, 95 % CI (50–59)] and a specificity of [60 %, 95 % CI (59–62)]. The PPV for all case definitions and individual signs/symptoms ranged from 11 to 20 % while the negative predictive values were >87 %. When we stratified by age <1 year and 1- < 5 years, difficulty breathing, severe pneumonia and the alternative case definition were more sensitive in children aged <1 year [70 % vs. 54 %, p < 0.01], [19 % vs. 11 %, p = 0.01] and [66 % vs. 43 %, p < 0.01] respectively, while non-severe pneumonia was more sensitive [14 % vs. 26 %, p < 0.01] among children aged 1- < 5 years.ConclusionThe sensitivity and specificity of different commonly used case definitions for detecting laboratory-confirmed RSV cases varied widely, while the positive predictive value was consistently low. Optimal choice of case definition will depend upon study context and research objectives.

Highlights

  • In order to better understand respiratory syncytial virus (RSV) epidemiology and burden in tropical Africa, optimal case definitions for detection of RSV cases need to be identified

  • Specificity, positive predictive value (PPV) and negative predictive value (NPV) of individual respiratory signs, symptoms and case definitions used for respiratory disease surveillance, including severe acute respiratory infection (SARI), Integrated Management of Childhood Illness (IMCI) non-severe, severe and very severe pneumonia and a hospitalized influenza like illness case definition to detect laboratory-confirmed RSV infections

  • 3 % (103/3810) of those tested for RSV died compared to 19.6 % (177/904) of acute respiratory illness (ARI) cases not tested for RSV (p < 0.01), (Table 2)

Read more

Summary

Introduction

In order to better understand respiratory syncytial virus (RSV) epidemiology and burden in tropical Africa, optimal case definitions for detection of RSV cases need to be identified. Testing for RSV is not routinely performed in resource-poor settings, and the utility of clinical case definitions for measuring RSV disease in these contexts is not well described. In Kenya, case definitions designed for other purposes, such as for influenza surveillance, have been used to estimate RSV burden [7, 9]. The most sensitive and or specific clinical case definitions for detection of RSV among patients with respiratory illness remain underexplored. An understanding of the performance of different clinical case definitions for identifying RSV infection can guide research and surveillance methodology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call