Abstract
The growing need for early diagnosis and higher specificity than that which can be achieved with morphological MRI is a driving force in the application of methods capable of probing the biochemical composition of cartilage tissue, such as sodium imaging. Unlike morphological imaging, sodium MRI is sensitive to even small changes in cartilage glycosaminoglycan content, which plays a key role in cartilage homeostasis. Recent advances in high- and ultrahigh-field MR systems, gradient technology, phase-array radiofrequency coils, parallel imaging approaches, MRI acquisition strategies and post-processing developments have resulted in many clinical in vivo sodium MRI studies of cartilage, even at 3 T. Sodium MRI has great promise as a non-invasive tool for cartilage evaluation. However, further hardware and software improvements are necessary to complete the translation of sodium MRI into a clinically feasible method for 3-T systems. This review is divided into three parts: (i) cartilage composition, pathology and treatment; (ii) sodium MRI; and (iii) clinical sodium MRI studies of cartilage with a focus on the evaluation of cartilage repair tissue and osteoarthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.