Abstract

Scrophularia striata and Tanacetum polycephalum are important medicinal plants in Iran which are rich inessential oils, bitter substances, and sesquiterpene lactones. The present study was conducted to compare fournon-linear regression models (segmented, beta, beta modified and Dent-like) to describe the germination ratetemperaturerelationships of Scrophularia striata and Tanacetum polycephalum over eight and seven constanttemperatures, respectively, to find cardinal temperatures and thermal time requirements to reach differentgermination percentiles. An iterative optimization method was used to calibrate the models and differentstatistical indices including RMSE, coefficient of determination (R2), and AICc were applied to compare theirperformance. The beta model was found to be the best model to predict germination rate of Scrophulariastriata at D10, D50 and D90 (R2 = 0.96, R2 = 0.97, R2 = 0.95; RMSE = 0.005, 0.001 and 0.001, respectively).According to this model outputs, the base, optimum, and the maximum temperatures for germination wereestimated as 1.21 ± 0.39, 25.91 ± 0.33 and 46.35 ± 4.12 °C, respectively. Also the segmented model wasfound to be the best model to predict germination rate of Tanacetum polycephalum at D10, D50 and D90 (R2= 0.98, R2 = 0.98, R2 = 0.98; RMSE = 0.067, 0.59 and 0.56, respectively). According to the model outputs, thebase, optimum, and the maximum temperatures for germination were estimated as 0.44±1.15, 26.95±0.75 and38.33±0.98 oC, respectively. It seems these two medicinal plants need moderate optimum temperature for seedgermination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call