Abstract

We consider a problem of calculating both thermal and microcanonical rate constants for nonadiabatic chemical reactions. Instead of using the conventional transition state theory, we use a generalized seam surface and introduce a concept of a coordinate dependent effective nonadiabatic transition probability based on the Zhu-Nakamura theory which can treat the nonadiabatic tunneling properly. The present approach can be combined with Monte Carlo method so as to be applicable to chemical reactions in complicated systems. The method is demonstrated to work well in wide energy and temperature range. Numerical tests also show that it is very essential for accurate evaluation of the thermal rate constant to use the generalized seam surface and take into account the nonadiabatic tunneling effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.