Abstract

Simple SummaryDiabetes mellitus is a common endocrine disorder in dogs that is similar to type 1 diabetes mellitus (T1DM) in humans. Candida spp. is a common non-pathogenic fungi that is identified more commonly and in higher amounts in humans with T1DM, including the gastrointestinal tract. This change to the distribution of microorganisms that inhabit the intestine has potential to affect glycemic control and even spread to other organs and cause severe illness. There are no studies that have investigated whether diabetic dogs, like humans, have alterations to the intestinal mycobiome. Therefore, our study sought to determine whether differences exist in the types of fungi cultured from feces in diabetic dogs and non-diabetic healthy control dogs. In addition, we wanted to find out if there were variables associated with fungi colonization. Diabetic dogs had more quantitative fungal growth than controls and females were more likely to yield growth than males. Diabetic dogs were also more likely to have Candida spp. colonized from feces. Glycemic control was also seemingly associated with growth of Candida spp. in diabetic dogs. Our results indicate that the intestinal mycobiome is altered in diabetic dogs with increased prevalence of Candida spp. and quantitative growth of fungi.Diabetes mellitus is a common endocrinopathy in dogs and in most cases is analogous to type 1 diabetes mellitus (T1DM) in humans. Candida spp. is a common commensal fungi with higher prevalence and magnitude of growth in humans with T1DM. There is currently no published information about the fungal microbiome in diabetic dogs. Therefore, the objectives of this study were to (i) determine whether diabetic dogs were more likely to have Candida spp. or other types of fungi from feces compared to non-diabetic controls, and (ii) identify variables associated with fungi colonization. Fourteen diabetic dogs and 14 age, sex, and breed matched non-diabetic healthy control dogs were included in this prospective case–control study. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used for fungal identification. Diabetic dogs had greater quantitative fungal growth compared to controls (p = 0.004). Moreover, female dogs were more likely to have fungi colonization than males (p = 0.02). All instances of Candida spp. and Aspergillus spp. colonization were exclusively identified in diabetic dogs. Serum fructosamine concentration was higher in diabetic dogs with fecal colonization of Candida spp. compared to diabetic dogs without growth (p = 0.03). Our results indicate that the fungal microbiome in feces is altered in diabetic dogs, which seem to favor an increased prevalence of Candida spp. and higher quantitative fungal growth. Moreover, female sex and glycemic control could affect the intestinal mycobiome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.