Abstract

Bromine substitution factor (BSF) was used to quantify the effects of disinfectant dose, reaction time, pH, and temperature on the bromine substitution of disinfection byproducts (DBPs) during chlorination and chloramination. The BSF is defined as the ratio of the bromine incorporated into a given class of DBPs to the total concentration of chlorine and bromine in that class. Four classes of DBPs were evaluated: trihalomethanes (THMs), dihaloacetonitriles (DHANs), dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). The results showed that the BSFs of the four classes of DBPs generally decreased with increasing reaction time and temperature during chlorination at neutral pH. The BSFs peaked at a low chlorine dose (1 mg/L) and decreased when the chlorine dose further increased. The BSFs of chlorination DBPs at neutral pH are in the order of DHAN > THM & DHAA > THAA. DHAAs formed by chloramines exhibited distinctly different bromine substitution patterns compared to chlorination DHAAs. Brominated DBP formation was generally less affected by the pH change compared to chlorinated DBP formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.