Abstract

Breast cancer has become the leading cancer of the 21st century. Tumor-infiltrating lymphocytes (TILs) have emerged as effective biomarkers for predicting treatment response and prognosis in breast cancer. The work described here was aimed at designing a novel deep learning network to assess the levels of TILs in breast ultrasound images. We propose the Multi-Cascade Residual U-Shaped Network (MCRUNet), which incorporates a gray feature enhancement (GFE) module for image reconstruction and normalization to achieve data synergy. Additionally, multiple residual U-shaped (RSU) modules are cascaded as the backbone network to maximize the fusion of global and local features, with a focus on the tumor's location and surrounding regions. The development of MCRUNet is based on data from two hospitals and uses a publicly available ultrasound data set for transfer learning. MCRUNet exhibits excellent performance in assessing TILs levels, achieving an area under the receiver operating characteristic curve of 0.8931, an accuracy of 85.71%, a sensitivity of 83.33%, a specificity of 88.64% and an F1 score of 86.54% in the test group. It outperforms six state-of-the-art networks in terms of performance. The MCRUNet network based on breast ultrasound images of breast cancer patients holds promise for non-invasively predicting TILs levels and aiding personalized treatment decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call