Abstract

Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in 'free' form in the pores of cortical bone. In this study, we aimed to develop and evaluate ultrashort-TE (UTE) MRI techniques for the assessment of T2*, T1 and concentration of collagen-bound and pore water in cortical bone using a 3-T clinical whole-body scanner. UTE MRI, together with an isotope study using tritiated and distilled water (THO-H2O) exchange, as well as gravimetric analysis, were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between the pore water concentration measured with UTE MRI and the cortical porosity derived from micro-computed tomography (μCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116 ± 6 ms were observed for collagen-bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527 ± 28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7-5.3% by volume and collagen-bound water concentration of 15.7-17.9% in bovine bone. THO-H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen-bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetric analysis showed a pore water concentration of 6.3 ± 0.8% and collagen-bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO-H2O exchange study. UTE-measured pore water concentration is highly correlated (R(2) = 0.72, p < 0.0001) with μCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen-bound and pore water concentration in cortical bone using a clinical scanner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.