Abstract

An optimal shape of the thread design of the implants is required for equal distribution of stresses to the surrounding bone matrix and for stimulation and promotion of bone remodeling. The study was construed with the aim of histomorphometric evaluation of bone stimulation generated by different microthread designed implants in enhancing osseointegration, and to assess the pattern of stress dissipation through a two-dimensional finite element analysis. Computer Aided Designing of two type of microthreads, one V-shaped and the other Power-shaped microthreaded dental implants with only microthreads all along body of the implant from the neck to the apex was made and 30 implant prototypes were milled. Two-dimensional finite elemental analysis (FEA) was carried out to assess the pattern of stress distribution in the bone around these implant designs and for In vivo study 24 implant prototypes were placed in rabbits tibia and femur, out of which 12 were with V-shaped microthreads and the other 12 were with Power-shaped microthreads. Histomorphometric analysis was carried out of the sections obtained from the enbloc specimen retrieved from the sacrificed rabbits. FEA showed less stress around the V-shaped microthreaded implant model when compared to Power-shaped microthreaded implant model. Hitomorphometry showed statistical significance difference in new bone volume (BV) and Total BV for V-shaped microthreaded prototype implant. V-shaped microthreaded dental implant design can be preferred over Power-shaped microthreaded dental implant for proper stress distribution and for promoting osseointegration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.