Abstract
The aim of this study was to histologically assess the effect of laser therapy (LILT, 660 and 780 nm) on the repair of standardized bone defects on the femur of Wistar albinus rats. The sample was composed of 12 Wistar albinus young adult rats of both genders. Three randomized groups were studied: group I (control, n = 4), group II (LILT, 660 nm, n = 4), and group III (LILT, 780 nm, n = 4). Samples were prepared using a bone defect on the left-side femur surface of the animals, with a total dimension of approximately 3 mm3. Groups II and III were irradiated every 48 h from the second application, where the first dose was given immediately after surgery and the second application came 24 h after surgery. The irradiations were applied transcutaneously at four points around the wound for 14 days. At each point, a dose of 50 J/cm2 (2 J) was given (s ∼ 0.04 cm2, 40 mW) and the total dose per session was 200 J/cm2 (8 J). The sacrifices were made 15 days after surgery and the specimens were routinely processed to wax, serially cut, stained with an H&E stain, and analyzed under light microscopy. The images were submitted to morphometric analysis using the image segmentation method using the K-means algorithm. The data obtained through the morphometric analysis were submitted to statistical analysis using the Tukey test. The results showed that the group treated with laser therapy in the infrared spectrum resulted in an increase in the repair of bone defects when compared with the group treated with the laser in the red spectrum and control group, which, in turn, had a very similar pattern of repair. A statistical significance (p < 0.01) was observed when comparing the results of group III and the results of Groups I and II. We concluded that the LILT in the infrared spectrum produced a positive biomodulation effect on the repair of bone defects in the femur of rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.