Abstract

A Strain energy density (SED) criterion based on a fracture mechanics approach was used to assess the possible failure of acetabular bone cement after total hip replacement. Stress distributions in the cement at the bone-cement interface were calculated using two-dimensional finite element analyses. The results indicate that increasing the thickness of bone cement reduces the risk of cement fracture. The addition of a metal backing to the polyethylene cup and retention of the subchondral bone further reduces the risk of failure. The SED criterion was found to predict the same critical regions as zones of possible cement failure as the von Mises' criterion. Although either criterion can be used for predicting failure in this acetabular analysis both criteria are excessively conservative in predicting failure in regions where high principal compressive stresses are present. Further development of cement failure criteria are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call