Abstract

Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.