Abstract
With the development of Internet of Things (IoT) technologies, industries such as healthcare have started using low-powered sensor-based devices. Because IoT devices are typically low-powered, they are susceptible to cyber intrusions. As an emerging information security solution, blockchain technology has considerable potential for protecting low-powered IoT end devices. Blockchain technology provides promising security features such as cryptography, hash functions, time stamps, and a distributed ledger function. Therefore, blockchain technology can be a robust security technology for securing IoT low-powered devices. However, the integration of blockchain and IoT technologies raises a number of research questions. Scalability is one of the most significant. Blockchain’ scalability of low-powered sensor networks needs to be evaluated to identify the practical application of both technologies in low-powered sensor networks. In this paper, we analyse the scalability limitations of three commonly used blockchain algorithms running on low-powered single-board computers communicating in a wireless sensor network. We assess the scalability limitations of three blockchain networks as we increase the number of nodes. Our analysis shows considerable scalability variations between three blockchain networks. The results indicate that some blockchain networks can have over 800 ms network latency and some blockchain networks may use a bandwidth over 1600 Kbps. This work will contribute to developing efficient blockchain-based IoT sensor networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.