Abstract

BackgroundIn order to improve the availability of biomass, the concept of growing high yield biomass with short rotations and intensive culture has been introduced. Bamboo has become a feedstock of potential interest for future energy production due to its high productivity and short rotation time. The growth age of biomass is an important factor affecting the efficiency of bioconversion and pretreatment for bioenergy production. In this regard, more information is required on the morphology and chemical composition of bamboo for short-rotation biomass production. In this study, we used a compositional assay to compare a bamboo of two different growth ages.ResultsBamboo of two different ages showed characteristics patterns of morphology, chemical composition, and bioconversion. In young-age (2-month-old) bamboo, the pattern of tissue organization was similar to that of old-age (3-year-old) bamboo, indicating that the former had reached its full height. There were significant differences between young-age and old-age bamboo in terms of chemical composition. The glucose contents in old-age bamboo did not differ significantly among its internodes. For young-age bamboo, the lignin contents were 14.6–18.3%, whereas those of old-age bamboo were considerably higher, ranging from 25.4 to 27.1% with increasing syringyl-to-guaiacyl ratio. The yield of total sugars following enzymatic hydrolysis of young-age bamboo was approximately eight times. However, following hydrogen peroxide–acetic acid pretreatment, the results of separate hydrolysis and fermentation and simultaneous saccharification and fermentation did not differ significantly between young- and old-age bamboo. However, ethanol production was higher in 2-month old than in 3-year old from initial raw biomass.ConclusionOur data show that the production of total sugar from raw material was high in young bamboo with low lignin content. With respect to short-rotation biomass, bamboo culm harvested after termination of height growth is more appropriate for use as a biomass resource to achieve a high yield for bioconversion process.

Highlights

  • In order to improve the availability of biomass, the concept of growing high yield biomass with short rotations and intensive culture has been introduced

  • Biomass productivity The productivity of bamboo was assessed on the basis of the fresh and dry weight

  • Anatomical characteristics As anatomical features directly affect bamboo’s physical and mechanical properties, we have conducted a comparative analysis of the anatomical characteristic between 2-month-old and 3-year-old bamboo

Read more

Summary

Introduction

In order to improve the availability of biomass, the concept of growing high yield biomass with short rotations and intensive culture has been introduced. Bamboo has become a feedstock of potential interest for future energy production due to its high productivity and short rotation time. The growth age of biomass is an important factor affecting the efficiency of bioconversion and pretreatment for bioenergy production. In this regard, more infor‐ mation is required on the morphology and chemical composition of bamboo for short-rotation biomass production. In 2014, the production of bioenergy as sustainable alternatives to fossil fuel-based energy resources was represented approximately by 2.8 million TOE, which was only approximately 1% of primary energy consumption [3]. Korea has limited biomass resources and the high cost of biofuels is a major barrier to their widespread use [1]. Increasing efforts are being made to identify new suitable biomass resources for biofuels production [4,5,6,7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call