Abstract
Starch agricultural leftover is a potential substrate for photosynthetic bacteria to produce hydrogen. In this work, the effect of initial pH on photo-fermentation biohydrogen production process and electron balance were investigated. The modified Gompertz model was adopted, and hydrogen yield, sugar consumption and metabolite evolution were monitored with initial pH varying from 5 to 9. Results showed that hydrogen was produced mainly through acetic acid and butyric acid metabolism pathways when starch taken as carbon source. It was found that the maximum hydrogen yield (642 ± 22 mL) and highest hydrogen production rate (77.78 mL/(L·h)) were obtained at initial pH of 7. 37.65% substrates electrons diverted towards hydrogen. Lower hydrogen yield, hydrogen production rate and lower electrons diversion were obtained at other initial pH levels. Also, the lag phase time was 0.04 h when pH was 7, which was significantly lower than other levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.