Abstract

AbstractBackgroundThe aim of this study was to evaluate the biogas production of chicken manure (CM) co‐digestion with different types of household waste (soft organic [SO] and food waste [FW]), as well as to evaluate the bacterial load of feeding stock and digested slurry samples before and after anaerobic digestion (AD). The experiment was carried out using lab‐based prototype digesters for co‐digestion of CM with different household wastes (5%). Three experimental groups (T1, T2, and T3) were designed using mixing ratios of SO:CM:H2O:inoculum (5:22.5:22.5:50), FW:CM:H2O:inoculum (5:22.5:22.5:50), and (SO + FW):CM:H2O:inoculum (2.5 + 2.5:22.5:22.5:50). The digesters were set at 28–34°C for 30 days for hydraulic retention time (HRT). Total viable count (TVC), Escherichia coli, and Salmonella spp. counts were determined using the spread plate technique.ResultsThe study revealed that the highest average cumulative biogas yield was achieved from T1 > T3 > T2, but the concentration of CH4 was found in T3 > T2 > T1. The biogas production between the three groups was statistically nonsignificant (p > 0.05) but the daily concentration of CH4 was found statistically significant (p < 0.05). The average concentration of CH4 and CO2 in biogas was found to be 30% and 68% for T1, 60% and 37% for T2, and 69% and 27% for T3. However, the H2S content was within the acceptable range. The bacterial load was decreased by 2–3 logs before and after AD, and this reduction was statistically significant (p < 0.05).ConclusionThe research found that the co‐digestion of CM with combined household wastes increased the methane concentration in biogas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.