Abstract
BackgroundPeri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants. As antibiotic treatment is ineffective to fully cure biofilm mediated infections, antimicrobial modifications of implants to reduce or prevent bacterial colonization are called for. Preclinical in vivo evaluation of the functionality of new or modified implant materials concerning bacterial colonization and peri-implant health is needed to allow progress in this research field. For this purpose reliable animal models are needed.MethodsCustom made endosseous dental implants were installed in female Sprague Dawley rats following a newly established three-step implantation procedure. After healing of the bone and soft tissue, the animals were assigned to two groups. Group A received a continuous antibiotic treatment for 7 weeks, while group B was repeatedly orally inoculated with human-derived strains of Streptococcus oralis, Fusobacterium nucleatum and Porphyromonas gingivalis for six weeks, followed by 1 week without inoculation. At the end of the experiment, implantation sites were clinically assessed and biofilm colonization was quantified via confocal laser scanning microscopy. Biofilm samples were tested for presence of the administered bacteria via PCR analysis.ResultsThe inner part of the custom made implant screw could be identified as a site of reliable biofilm formation in vivo. S. oralis and F. nucleatum were detectable only in the biofilm samples from group B animals. P. gingivalis was not detectable in samples from either group. Quantification of the biofilm volume on the implant material revealed no statistically significant differences between the treatment groups. Clinical inspection of implants in group B animals showed signs of mild to moderate peri-implant mucositis (4 out of 6) whereas the mucosa of group A animals appeared healthy (8/8). The difference in the mucosa health status between the treatment groups was statistically significant (p = 0.015).ConclusionsWe developed a new rodent model for the preclinical evaluation of dental implant materials with a special focus on the early biofilm colonization including human-derived oral bacteria. Reliable biofilm quantification on the implant surface and the symptoms of peri-implant mucositis of the bacterially inoculated animals will serve as a readout for experimental evaluation of biofilm-reducing modifications of implant materials.
Highlights
Peri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants
Accumulation of bacterial biofilms on dental implant surfaces can lead to peri-implant mucositis, an inflammation of the peri-implant soft tissue which affects more than 50% of dental implants [7,8,9]
At the end of our experiment, we observed clinical symptoms indicating peri-implant mucositis in four of the six animals in group B, with bleeding on probing occurring in three of these four animals, whereas none of the antibiotics-treated control group animals showed any signs of inflammation in the implant area. These findings indicate that S. oralis and F. nucleatum, in combination with the endogenous oral microbiota of the rats, were sufficient to induce a phenotype of mild to moderate peri-implant mucositis
Summary
Peri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants. Preclinical in vivo evaluation of the functionality of new or modified implant materials concerning bacterial colonization and periimplant health is needed to allow progress in this research field. For this purpose reliable animal models are needed. Accumulation of bacterial biofilms on dental implant surfaces can lead to peri-implant mucositis, an inflammation of the peri-implant soft tissue which affects more than 50% of dental implants [7,8,9]. Without resolution mucositis may progress to peri-implantitis, which affects the underlaying alveolar bone and occurs at more than 25% of implants after 5 years [9]. Ensuing sequelae may include bone regression and implant loss [11,12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.