Abstract

Speech-recognition tests are a routine component of the clinical hearing evaluation. The most common type of test uses recorded monosyllabic words presented in quiet. The interpretation of test scores relies on an understanding of the variance of repeated tests. Confidence intervals are useful for determining if two scores are significantly different or if the difference is due to the variability of test scores. Because the response to each test item is binary, either correct or incorrect, the binomial distribution has been used to estimate confidence intervals. This method requires that test scores be independent. If the scores are not independent, the binomial distribution will not accurately estimate the variance of repeated scores. A previously published dataset with repeated scores from normal-hearing and hearing-impaired listeners was used to derive confidence intervals from actual test scores in contrast to the predicted confidence intervals in earlier reports. This analysis indicates that confidence intervals predicted by the binomial distribution substantially overestimate the variance of repeated scores resulting in erroneously broad confidence intervals. High correlations were found for repeated scores, indicating that scores are not independent. The interdependence of repeated scores invalidates confidence intervals predicted by the binomial distribution. Confidence intervals and confidence levels for repeated measures were determined empirically from measured test scores to assist in interpreting differences between repeat scores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call