Abstract

BackgroundAlthough lung cancer screening (LCS) has been proven effective in reducing lung cancer mortality, it is associated with some potential harms, such as false positives and invasive follow-up procedures. Determining the time to next screen based on individual risk could reduce harms while maintaining health gains. Here, we evaluate the benefits and harms of LCS strategies with adaptive schedules, and compare these with those from non-adaptive strategies.MethodsWe extended the Lee and Zelen risk threshold method to select screening schedules based on individual's lung cancer risk and life expectancy (adaptive schedules). We compared the health benefits and harms of these adaptive schedules with regular (non-adaptive) schedules (annual, biennial and triennial) using a validated lung cancer microsimulation model. Outcomes include lung cancer deaths (LCD) averted, life years gained (LYG), discounted quality adjusted life years (QALYs) gained, and false positives per LCD averted. We also explored the impact of varying screening-related disutilities.ResultsIn comparison to standard regular screening recommendations, risk-dependent adaptive screening reduced screening harms while maintaining a similar level of health benefits. The net gains and the balance of benefits and harms from LCS with efficient adaptive schedules were improved compared to those from regular screening, especially when the screening-related disutilities are high.ConclusionsAdaptive screening schedules can reduce the associated harms of screening while maintaining its associated lung cancer mortality reductions and years of life gained. Our study identifies individually tailored schedules that optimize the screening benefit/harm trade-offs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call