Abstract
PurposeThe heat transfer within a heat exchanger is highly influenced by geometry of the components especially those with hollow structures like tubes. This paper aims to intend toward the study of efficient and optimized heat transfer in the bends of superheater tubes, with different curvature ratio at constant Reynolds Number.Design/methodology/approachThe effect of changing curvature ratio on enthalpy of the fluid passing through the superheater tubes for multi-pass system has been studied with the aid of computational fluid dynamics (CFD) using ANSYS 14.0. Initially a superheater tube with two pass system has been examined with different curvature ratios of 1.425, 1.56, 1.71, 1.85 and 1.99. An industry specified curvature ratio of 1.71 with two pass is investigated, and a comparative assessment has been carried out. This is intended toward obtaining an optimized radius of curvature of the bend for enhancement of heat transfer.FindingsThe results obtained from software simulation revealed that the curvature ratio of 1.85 provides maximum heat transfer to the fluid flowing through the tube with two pass. This result has been found to be consistent with higher number of passes as well. The effect of secondary flow in bends of curvature has also been illustrated in the present work.Research limitations/implicationsThe study of heat transfer in thermodynamic systems is a never-ending process and has to be continued for the upliftment of power plant performances. This study has been conducted on steady flow behavior of the fluid which may be upgraded by carrying out the same in transient mode. The impact of different curvature ratios on some important parameters such as heat transfer coefficients will certainly upgrade the value of research.Originality/valueThis computational study provided comprehensive information on fluid flow behavior and its effect on heat transfer in bends of curvature of superheater tubes inside the boiler. It also provides information on optimized bend of curvature for efficient heat transfer process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: World Journal of Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.