Abstract

Data compression methods aim at reducing the data size in order to make data transfer more efficient. To accomplish data compression, the basic algorithms such as Huffman, Lempel-Ziv (LZ), Shannon-Fano (SF) and Run-Length Encoding (RLE) are widely used. Most of the applications incorporate different variants of these algorithms. This paper analyzes the execution times, compression ratio and efficiency of compression methods in a client-server distributed environment. The data from a client is distributed to multiple processors/servers, subsequently compressed by the servers at remote locations, and sent back to the client. Our experimentation has been carried out using Simgrid Framework. Our results show that the LZ algorithm attains better efficiency/scalability and compression ratio, however, it works slower than other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.