Abstract
Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form, poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modular protein D4S2 and used them against termite colonies Coptotermes lacteus in fields. To achieve this, an integrated biomolecular bioprocess was developed to produce D4S2 for manufacturing SNC containing fipronil with high encapsulation efficiency of approximately 97% at benign reaction conditions and at scales sufficient for the field applications. PEI coating was achieved via electrostatic interactions to yield SNC-PEI with a slower release of fipronil than SNC without coating. As a proof-of-concept, bait toxicants containing varied fipronil concentrations were formulated and exposed to nine termite mounds, aiming to prolong fipronil release hence allowing sufficient time for termites to relocate the baits into and distribute throughout the colony, and to eliminate that colony. Some baits were relocated into the mounds, but colonies were not eliminated due to several reasons. We caution others interested in producing bait toxicants to be aware of the multilevel resistance mechanisms of the Coptotermes spp. “superorganism”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.