Abstract

Mesoscale convective systems (MCSs) wreak lots of havoc and severe damage to life and property due to associated strong gusty winds, rainfall and hailstorms even though they last for an hour or so. Planetary boundary layer (PBL) plays an important role in the transportation of energy such as momentum, heat and moisture through turbulence into the upper layers of the atmosphere and acts as a feedback mechanism in the generation and sustenance of MCS. In the present study, three severe thunderstorms that occurred over mesosphere–stratosphere–troposphere (MST) radar facility at National Atmospheric Research Laboratory (NARL), Gadanki, India, have been considered to understand turbulence, energy exchanges and wind structure during the different epochs such as pre-, during and after the occurrence of these convective episodes. Significant changes in the turbulence structure are noticed in the upper layers of the atmosphere during the thunderstorm activity. Identified strong convective cores with varying magnitudes of intensity in terms of vertical velocity at different heights in the atmosphere discern the presence of shallow as well as deep convection during initial, mature and dissipative stages of the thunderstorm. Qualitative assessments of these convective cores are verified using available Doppler Weather Radar imageries in terms of reflectivity. The MST radar derived horizontal wind profiles are in good comparison with observed radiosonde winds. Significant variations in the surface meteorological parameters, sensible heat flux and turbulent kinetic energy as well as horizontal wind profiles are noticed during the different epochs of the convective activity. This work is useful in evaluating the performance of PBL schemes of mesoscale models in simulating MCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.